If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-X-150=0
We add all the numbers together, and all the variables
X^2-1X-150=0
a = 1; b = -1; c = -150;
Δ = b2-4ac
Δ = -12-4·1·(-150)
Δ = 601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{601}}{2*1}=\frac{1-\sqrt{601}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{601}}{2*1}=\frac{1+\sqrt{601}}{2} $
| -1+1/2z=-6 | | 3x+9=-14 | | |3x+9|=14 | | 7+x/7=10 | | 5n+8-n=6(n-1 | | -5x+6=38 | | 20x-19=5(3x-3)+5x-4 | | 2x+3=x/2-9 | | 2x+3=2x-x/2 | | y-5=3y-15 | | 5l+(-16)=-78 | | 2(x+4)=3(2x+4) | | 4(3x-1)=36 | | 2-12x=0 | | 3x+5=7x-6-x | | p/5+12=20 | | x^2+20*x-3500=0 | | G(x)=-2x^2+8x-11 | | x^2+20*x+3500=0 | | t/2=9/5 | | 3q+1800=0 | | l+2l+(l+5)=101 | | 2x^3-15x^2+27x-18=0 | | 8x-3x=440 | | 1/10800=x | | 1/((30*24*60*60)/(10*24))=x | | x^2+180x-300=0 | | 19-(2x+3)=2(x=3)=x | | (30*24*60*60)/(10*24)=x | | 7(3-x)+2=31 | | 3x=87−6 | | 13-2x=x+2 |